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Magnetoviscosity of semidilute ferrofluids and the role of dipolar interactions:
Comparison of molecular simulations and dynamical mean-field theory

Patrick Ilg,l’* Martin Kr('jger,2 and Siegfried Heds
Lnstitut fiir Theoretische Physik, Technische Universitat Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
2Polymer Physics, ETH Zirich, Wolfgang-Pauli-Strasse 10, CH-8093 Ziirich, Switzerland
(Received 24 September 2004; published 22 March 005

Extensive molecular simulations on a model ferrofluid are performed in order to study magnetoviscous and
viscoelastic phenomena in semidilute ferrofluids. Simulation results of the nonequilibrium magnetization, shear
viscosity, and normal stress differences are presented. Rotational and configurational contributions to the shear
viscosity are analyzed and their influence on the magnetoviscous effect is discussed. The simplified model of
noninteracting magnetic dipoles describes the nonequilibrium magnetization and the rotational viscosity, but
does not account for configurational viscosity contributions and normal stress differences. Improved mean-field
models that overcome these limitations show good agreement with the simulation results for weak dipolar
interactions where the models should apply. Comparisons to simulation results for various interaction strengths
allow us to determine the range of validity of the mean-field models.
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[. INTRODUCTION The paper is organized as follows. In Sec. Il, the model
system is formulated. The equations of motion are given ex-

The manipulation of viscous properties of fluids by mag- licitly as well as the relevant macroscopic quantities. Di-
netic fields(magnetoviscous effechas attracted consider- plcitly » . PIC g -
mensionless quantities are introduced and the numerical

able interest both for technical and medical applications as . . . ) o
well as from a theoretical point of viewl—3). mne the implementation is described. The simplified NI and DMF

dynamical properties of highly diluted ferrofluids are well ;erl;erring?terr(]jogﬁ:js féfnrzf;vgd;?n;eﬁ] lgﬁflénﬂlgt'rﬂgégé UI;SS
described by the kinetic model of noninteractifidj) ferro- P P 9 '

magnetic particle$4], experimental observations on various Wf?” as.emplrlcal knowledge, in Sec. IV. Conclusions are
ferrofluids demonstrate a quantitative and qualitative differ-> ered in Sec. V.
ent behavior(see, e.g.[5] and Odenbach and Thurm [i]

as well as references thergihn this work, we present mo- [l. MODEL FORMULATION

lecular simulation results on magnetoviscous and viscoelas- . . . . .
We consider a system of identical spherical particles of

tic effects in a model ferrofluid for different concentrations . i t particl ber densitv=N/V. Each partic]
and dipolar interaction strengths. Results on the formation o?j'ame ero at particle number density= - =ach particle

nonequilibrium structures and their relation to dynamicalCarrles an_embedded magnetic point dipole moment of

properties help to improve the understanding of the magnes_,trengthm. The position and magnetic moment of partigle

toviscous effect from a microscopic point of view. The &€ denoted by; andm; =mu;, respectively, where the three-
present study is also helpful to test several assumptions ur([i_lmens[onal unit vectow; denotes the orientation of the
derlying improved kinetic model6—9], in particular the dy- magnetic moment. . : .
namical mean-fieldDMF) theory developed in Ref9] and . Particlesj %Qdk interact with each other by dipole-dipole
to provide a microscopic basis for thermodynamic theorie nte_ractlgnsd_) and a sphencz_illy symm_etrlc repulsive po-
[10]. Contrary to previous Brownian or Stokesian dynamics ential = which describes steric interaction effects,
simulations[11-13, we focus here on semidilute ferrofluids Dy, U, Uy) = d)dd(rjk,uj,uk) + D1y, (1)
with weak dipolar interactions. This regime is of direct rel- ) ) ]
evance for various commercial ferrofluif]. On the other Wherery=rj—r, and ry=|ry/ is the relative distance be-
hand, simulation results in this regime can be compared t§veen the particles. The dipole-dipole interaction is given by
the predictions of the model of noninteracting dipoles and
dynamical mean-field theory for weakly interacting ferroflu- @Y u,u’) = 3
ids. These comparisons help to clarify the role of weak di- A ol
polar interactions for dynamical properties. [(M], simula-  \wheref=r/r and uo=47x 107 H/m. For a better compari-
tion studies similar to the ones presented here have be&n to the result§15), the potentiakhs is also chosen as a
pfarformed, but only for small system sizes and in two d'men(truncated and shifted Lennard-Jones potentiakbs(r)
sions only. =4€ C(r)-C(rg], for r<r., and®=0 for r >r, where
C(r)=(a/r)¥=(o/r)®, r.,is the cut off radius, and e-is the
value of ®% in the minimum. In particular, we choose the
*Corresponding author. Electronic address: ilg@physik.tu-so-called Weeks-Chandler-Anders@QWCA) potential as in
berlin.de [15], i.e., r.,=2Y%c, such that the potential is cut off in the

[u-u=3u-H-NH], (@
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minimum, resulting in a purely repulsive interaction with dimensionless version of these dynamical equations.
continuous derivative at.. In addition to the pair interac-

tions, the particles are exposed to a homogeneous magnetic B. Macroscopic quantities, viscosity coefficients
field H. Therefore, the magnetic dipole moment of particle
contributesq)!*:—muj-H to the total potential energyb

J
=EJ((D:—|+EK(I)J|()

The viscous and viscoelastic behavior of the model sys-
tem is described by the viscous pressure teRs@overning
the momentum balance equatipin=-V -P+f,,, wheref, is
the magnetic force density. For the spatially homogeneous

A. Translational and orientational dynamics system to be considered in the remainder of this article, the
The solvent of the ferrofluid is not considered explicitly ViSCOUS pressure tensBris defined by[17]
here. Instead, it is assumed that collisions keep the ferromag- N

model this effect, friction and Brownian forces are added to

the equations of motion derived frof so as to ensure the The vi ; tensBiis defined as th " .
fluctuation-dissipation theorefd6,17. If M and © denote € VISCOUS SIress tensons defined as the hegative viscous

the mass and the moment of inertia tensor of the ferromag‘-)res’Sure tensof, =—P. Th_e first term on the right hand side
netic particles, the equations of motion rddd,15,17 9f Eq. (6) represents the isotropic pressure. The seqond term
' ” is the contribution of the Newtonian solvent with viscosity

_ I 7 and the symmetric velocity gradieﬁlz%[VvﬂVv)T].
Mo; = 2" Fi = &(oj — (1)) + V2kg TLW], (3 The contribution of the internal forces is described by the
k=1 third term. The last term describes rotational friction if the
average angular velocity of the particlEs(l/N)Ei'ilwi dif-
fers from the local vorticity of the flow2 (see, e.g., Shliomis
in [1]). In Eq. (6), we have introduced the hydrodynamic
volume (or packing fraction ¢=n=wa>/6. The total antisym-
+ V'ZkBTZrotWEOt, (4)  metric tensor of rank 3L_evi-Civita) is denoted bye, i.e.,

i i ] €:(ab)=ax b for the dyadicab constructed by arbitrary vec-
wherev;=r; and w;=u; X U; denote the translational and an- tors a andb. Like any second rank tensor, the viscous pres-
gular vel%gmes of particlg, respectively. The forceB and  gyre tensoP can be decomposed uniquely into its isotropic,
torquesNj,’ are obtained from the interaction potential by symmetric traceless and antisymmetric {3

ij: —&(bjk/&rjk, N?kd:—[,J(I)Jk (5)

netic particles in thermal equilibrium with the solvent. To P=pyl- 7D+ iErrJ_ijk+3%¢ e (w-9Q). (6
2V7
ik

N

N
O - =mu; X H + 2N = o0 = Q1))
k=1

P=pl1 +P+ le-[f‘. (7)
(no summation conventiognwhere £ =u; X d/ du; is the ro- 2
tational operator. The first term on the right hand side of Eq The symbol ==~ denotes the symmetric traceless part of a
(4) equals @', which is the torque exerted by the mag- tensor. The antisymmetric part involves the pseudovector
netic field. Primes on summation symbols imply that thep®=—_g:P. Taking the symmetric traceless part of Eq. (6) we
term j=k should be omitted from the sums. Boltzmann’s gbtain

constant and the absolute temperature are denotég agd r— 1 — 8
T, while ; and{,; are the translational and rotational friction P=-nD+ 5/% i (8
coefficients, respectively. For a sphere of diametein a -

solvent with viscosityzs, these coefficients are given iy  |nserting the equation of motio#) into (6) and averaging

=3mns0 and {q=m7s0°. Frequent collisions of the ferro- over the particles, the antisymmetric part of the viscous pres-
magnetic particles with the solvent molecules are assumesglyre tensor is given by

on short time scales. Accordingly, the effect of the collisions

is modeled by R independent, three-dimensional Wiener p*=M X H 9
processes Wii(t) with (Wi())=0 and (WiOW(t'))  \yhereM =M, denotes the macroscopic magnetization re-
=min(t,t") g1 for x=t, rot. Averages over different realiza- gjiing from the magnetic moments;=mu;, U=(1/N)Zu,

tion of the Wiener processes are denoted(y Equations s the average orientation of the particles, &hg=nmis the

(3) and (4) account for the hydrodynamic drag in the pres-saturation magnetization. Thus, the viscous pressure ténsor
ence of a flow fieldv(r) with the local vorticity (r)  js symmetric in the absence of a magnetic field. In the pres-
=2V Xu(r). Hydrodynamic interactions are not included in ence of a local magnetic field, an antisymmetric contribution
Egs.(3) and(4), which therefore correspond to the so-calledto the viscous pressure arises due to the torques exerted by
“free draining” limit. In our simulations we obtain particle the magnetic field on the particles. This torque maintains the
trajectories and orientations from Ed8) and(4) which es-  difference of average particle rotation and local vorticity of
sentially involve, in addition to the numb& and number the flow, —€. We mention that the total pressure tensor,
densityn of particles, the macroscopic flow fiekelr), sol- i.e., the sum of the viscous and Maxwell pressure tensors, is
vent viscosity 7., dipole moment strengtin, massM, and  symmetric due to conservation of total angular momentum.
moment of inertia tenso® of the particles, temperaturg Note that the ensemble average is denoted by an overbar,
and magnetic fieldH as free parameters. See Sec. Il C for awhile averages over the thermal noise are indicated by angu-
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lar brackets. Since we consider independent Wiener prathe dimensionless parameters governing the dynaii2s
cesses, it follows that for large systegw;(t))=W,(t)=0. and (13 areh,)\,gf, andT*.

In a steady shear flow with shear rageand the linear
velocity profile v=(4y,0,0), several viscometric functions Ill. SIMPLIFIED MODELS FOR WEAK DIPOLAR
can be defined. Théotal) shear viscosity,, is defined as INTERACTION
7yx=~Pyx/v. An important role in the theory of ferrofluid  The time evolution equation®) and(4) or (12) and(13)
dynamics plays the so-called rotational viscosify; which  cannot be solved analytically except for special cases. In
is the shear viscosity resulting from the antisymmetric part ofyrqger to better understand the dynamical behavior described
the pressure tensor onlye=-p5/(2y). In nonpolar com-  py these equations, it is useful to consider simplified models
plex fluids such as polymers, the shear viscosity is domithat allow further analytical investigations. In particular, a
nated by the configurational viscosity, defined 2" dynamical mean-field model has been proposed recently by
=-P"/y, where the configurational contribution to the two of the authord9] that extends the existing model of
stress tensoP®"" is given by the second term on the right noninteracting magnetic dipol§4] to the weakly interacting
hand side of Eq(8). Furthermore, the first and second nor- regime. In order to make the paper self-contained, we briefly
mal stress differences are defined Ky=P,,—P,, andN,  review the more general DMF model, and summarize its
=P,,~Pyy, respectively[18]. Experimental results on the implications to be checked against simulation results in Sec.
magnetoviscosity are frequently displayed using the relativey/.
viscosity increase\ 7/ 7o, whereA»=n,,—n, and 7 is the
viscosity in the absence of a magnetic field. A. Effective local field

If dipolar interactions can be neglected, the orientational
dynamics Eq.(4) decouples from the translational motion
and the magnetic properties of the system can be studied in

For further analytical studies as well as the numericakerms of the phase space variablesind @ only. On time
implementation of the equations, it is convenient to use discales where the inertia term can also be negled®edy
mensionless quantities. The dimensionless length and timep, Eq. (4) reduces to the Langevin formulation of the ki-
are given byr*=r/g andt*=t/ 7, 7,=(Mo?/€)"? respec- netic NI model[4,19]
tively. Similarly, the reduced temperature is definedToy
=kgT/€, reduced dipolar moment by* = m(4mugeas) 2,
magnetic fieldH * = H(4muy0°/ €)2, and moment of inertia
O*=0/Md? The dimensionless friction coefficients are
given by, =4 (d?Me)Y? and {,,= o Ma?e) ™2 The dipo-
lar interaction parametex,

C. Dimensionless equations

1 2KgT -
©0=Q-—LD+/ =W, (14)

rot rot
with £,Q, andW defined in Sec. Il A. The potentiab is
identified with the magnetic field contributish; thus pres-
ently £Lb=-muXxH. The corresponding Fokker-Planck

\ = L - m_z (10 Smol_uchow§ki_ eq_uation for the orientational distribution
AmpokgTa® T+ function f(u;t) is given by[4]
is a measure for the strength of the dipola}r interactions com- at . [(Q ~ i[,cp)f:| . kiT[}f_ 5
pared to the thermal energy. The Langevin paramigter at Lot Cor
h= mH = m* H* ’ (11) The magnetization is determined frof by M=Mg{u),

where(u)=fd?u uf(u). For low densities, the effect of weak
, o ) o dipolar interactions on the equilibrium magnetization can be
is the eﬂer%y of almagnetu: d!polehln the magnetic Eeld,rela'described to leading order by an effective local magnetic
et e thermal cnry. Usng hese Uanies, e GIMCe =+, o in dimensionies o=+ (1)
[20,21]. In these theories, the leading order contribution of
N . dipolar interactions appears in the form of the Langevin sus-
0, =2 F— 40 —v* () +V2T* LW, (12)  ceptibility x =8\, whereX is given by Eq.(10) and ¢
k=1 denotes the hydrodynamic volume fraction introduced above.
While higher order terms i and ¢ have been considered
. N . . for the equilibrium magnetic propertigsee[20,21 and ref-
O i) =T* Uy X h+ 2N = {0 - % (1)) erences therejn here only the lowest order contribution is
k=1 taken into account for the dynamical properties. Including
these higher order terms into the dynamics is left for further
studies. The energy of a magnetic dipole in the local field
In Egs. (12 and(13), the dimensionless forces and torquesH,q iS given by
have been defined byF; =(7/Mo?Fj and N
=(75/Ma®)NF, respectively. Both of them are proportional
to the dipolar interaction parametar The dimensionless The mean-field character of the potentidb) is evident. In a
pressure tensor is defined By = (¢°/ €)P. BesidesN and ¢, constant magnetic fielt with strengthH, the equilibrium

keT  T*

FN2T* (oW (13

q)loc: —mu - Hloc- (16)
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magnetization is found from Eq(16) to be given by weakly interacting magnetic dipoles proposed . In the
M/Mg=S;(h)=L4(hye). The saturation magnetization is de- limit y, —0, the kinetic model of noninteracting magnetic
fined by Mg,=nm and L;(x)=cothx)-1/x denotes the dipoles is recovered as a special case.

Langevin function. Dipolar interactions therefore lead to an Neither the NI nor the DMF model leads to closed form
enhanced magnetization which to leading ordex is given ~ expressions for the magnetization and viscosity. In the fol-
by Si(h)=L;(h)+x.L;(h)Ly(h), where the prime denotes a lowing, to overcome these difficulties, both models are
total derivative. Recent simulation studies have shown thalfeated within the effective field approximation, proposed in
the magnetization of weakly interacting ferrofluids is indeed(4]. Previous studie$7,19 have shown that the effective

well described in terms of this local fie[d5]. field approximation gives very accurate results for the NI
_ _ model as well as generalizations thereof. Therefore, we em-
B. Dynamical mean field ploy the effective field approximation also in the DMF

Following similar strategies widely used in the dynamicsmodel.
of nematic liquid crystal§18,22,23, we assume that Eq.
(16) represents a meaningful potential also for dynamical C. Implication for the pressure tensor

properties. In a given external fiow fieldr), additional con- Within the kinetic models, the magnetization dynamics is

tributions from dipolar interactions appear due to the diswr'obtained from Eq(15). The nonequilibrium magnetization in

bar_1ce of the equilibrium structure. The mean dipolar intery, 1y getermines the antisymmetric press(@eand therefore
action energy can be calculated self-consistently from th

. - T . §he rotational viscosity. In order to calculate the symmetric
orientational distribution functio, traceless part of the pressure ten@®)r we take advantage of
n the fact that for homogeneous systems this contribution can
Dgedu;f) = P f d’u’ f d® ®%(r,u,u’)g(r,u,u’)f(u’) be reexpressed in terms of the pair correlation function. Us-
B ing Eq. (20) for the effective potential and the analog of Eq.
(17) (19) for the pair correlation function for weak dipolar inter-

whereg denotes the pair correlation functi@]. For weak actions, the viscous pressure tensor becof@ps

dipolar interactionsg(r,u,u’)=g(r) becomes the pair cor-

relation function of the reference fluid without dipolar inter-
actions. Note that in equilibrium the leading order term lin-
ear in\ of Eq. (17) vanishes by symmetry, since in this case

d1) =0 r) is radiall i dth I 20
Oed(r) =0edr) is radially symmetric and the angular average )
01? Pad oSer distance vectons vanishes. In Eg. (21), we have introducedh= 27\ ¢?, where «

In an external flow field, the equilibrium structure is dis- = 727/ (357 and7q=m7:0°/(2kgT) denotes the rotational
turbed leading to an anisotropic pair correlation functiondiffusion time of a sphere with diameterin a solvent with
[24]. In order to estimate the flow-induced distortion of the Viscosity 7. The shear viscosity of the isotropic suspension
pair correlation function, we follow the proposition of one of IS 70=7d1+3¢+b¢?), where b= ek and 7= 7o-3(c,
the authors if25] and assume affine deformation with the —3)a(u)? The coefficients, depend on the detailed form of
flow accompanied by an exponential relaxation toward thehe short range interaction potential. For the WCA potential

P=pl1-27,D—Talu)u) X & —2a(c, - 3)D - (u)u)

+ %nkBT((u)h —h{u)).

equilibrium state, considered in Sec. Il and in the limit of small concentrations
where the pair correlation function of the reference fluid can

% +r-(Vo)-Vg=- }(g ~ Ged)- (18)  be approximated bg(r) = exg-BP(r)] for r>o and zero

t T ¢ else, these coefficients take the valugs=7.72 andc,

~8.36. A reduced temperature of =1 has been assumed.

On time scales long compared to the structural relaxatiorll: tentials with soft lsion hiah | nd
time 7, Eq. (18) predicts a nonequilibrium stationary struc- a?er ggtzpngjs with softer repuision nhigher valuespandcy,

ture which to lowest order in the velocity gradients is de- . . .
scribed by _ In the abs_ence of Q|p_olar interactions, the pressure tensor
is purely antisymmetric if solvent contributions and the iso-

g(r) = gedr) — D:FTrgedr), (19)  tropic pressure are disregarded. Including dipolar interac-

tions within the mean-field model, we notice from Eg1l)

that the pressure tensor and therefore the viscosity depend

not only on the vorticity of the flow but also on the symmet-

ric part of the velocity gradierD. Similarly, the nonequilib-

rium magnetization depends, via the effective poterig),

also onD. Such a dependence has nicely been demonstrated

in recent experiments on commercial ferroflujé@s.

where D has been defined after E¢6). Results of recent
nonequilibrium molecular dynamics simulations of a dipolar
model fluid[26] are in good agreement with EA.9). Insert-
ing Eq.(19) into Eq.(17) and combining with the local field
(16), the effective potential of the magnetic field and dipolar
interactions is given by

Det _ Proc+ Pscr 6 The only parameter in the DMF model that is not speci-
o= —=-U-hg+_yu-D-(u). (200 fied so far is the translational relaxation timeentering the
kg T ks T 5 ) : : L )
dimensionless quantity. In principle, 7 can be determined
Inserting the effective potential Eq20) into the kinetic  from molecular simulations of structural relaxation in non-
equation (15) defines the dynamical mean-field model of magnetic systems. Here, we use as a rough estimate the time
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to travel a particle diameter~ 7,=(Mo?/ €)% With this - —
choice no adjustable parameters are left in the DMF model. y @ y(r)=y (shear)

=

N

D. Prediction for steady shear flow @,
A steady shear flow with shear rajeand the linear ve-
locity profile v(r)=(yy,0,0 induces a nonequilibrium mag- x& I
H

netization component perpendicular to the magnetic field di- _

rection. Here and in the following, we consider the special "@—mu
case where the magnetic field is oriented in the gradient di- ‘ng=l/2va(’)

rection of the flow. In the absence of dipolar interactions and
for small shear rates, the off-equilibrium magnetization com-
ponent is to a very good approximation given WX> FIG. 1. Schematic plot of the flow geometry together with the

:%-W_é(h)l_l(h), where Té(h)ZZTrotLl(h)/[h—Ll(h)] is the orientation of the magnetic field considered in the present study.
transversal relaxation tinfé,19]. Within the dynamic mean- in the rheology of complex fluidkL8]. An interesting obser-

X

field model,(uy is given by(uy=3y7(h)S(h), where vation from Eq.(24) is that the ratio N,/N,=(c,+2)/7 is a
_ constant, N,/N;~1.17 in the present case of the WCA po-
7 (h) = 7 (e [1 + Xt (oo (22) tential, independent of the magnetic field, the shear rate, and

with t£(X) = ko(1=L1(X) /%), ko=(7/24 . To lowest order in the dipolar interaction strength. This ratio is determined by

dipole;)r inter(;\ctionls Eq '(25) reduces tor(h)=7 (h){1 the details of the short range interactions and should depend
, [ =75 X ;

+x [ty () +t (M1}, with £ (0 =L500 - Ly()[L2(0) only weakly viac, on the volume fraction.

. “LVY Finally, we note that Eq(24) implies that the ratio of
—Ly(X)]/[x=L4(x)]. For details of the derivation we refer the normal sytress differences g boundFe)d|Ny/Nl|>1/14 due

reader to9]. _ to the propertyc; = 0.
For the special case of plane Couette flow with the mag-
netic field oriented in the gradient direction, the shear viscos- IV. SIMULATION AND RESULTS
ity calculated from Eq(21) is given by Steady shear flows with shear ratand the linear veloc-

(h) ity profile v(r)=(vy, 0,0 together with static magnetic fields
hs(h) + dyKXLS.?l(h)>, (23)  oriented in the gradient direction of the fldd=(0,H,0) are

2ot considered exclusively in this section. Equilibrium simula-

with d,=(c;/6-9/4/6=-0.16 for the present case. For tions are covered at vanishing shear rate. Figure 1 schemati-

vanishing dipolar interactions, ER3) reduces to the result cally illustrates the chosen flow geometry together with the

for the rotational viscosity given ifi4]. We note that the magnetic field direction.

. : . o In order to study bulk properties in a finite, sheared sys-
shear viscosityy,, is modified compared to the NI model not o i
only by replacing the magnetic field with the local mean fieldtem‘ Lees-Edwards periodic boundary conditidds] are

in the rotational viscosity, but also due to extra contributionsﬁg;ﬁlofﬁ:'re-g::fiolﬁr:cigel;anmgeih?i'g%lalrn'T;?éarﬁg?ﬁs dagﬁtgrzr;(_dled
from dipolar and steric interactions. Note also that the Coniionsgof articles within a s heriéal cavity of rad} are
tributions of repulsive steric interactions and the attractive partc . P od -

treated explicitly, while the effect of particles with distances

part of the dipolar interactions cancel partially. Depending on d . . .
the detailed form of the steric interaction and the resultinﬁre"’u?r.tharrFeF IS gst;]mated based ohn a ?fontml;um Qel's,cr|p—
pair correlation function, the coefficien, may have either vlvci)t?{ dtisltsar?c?ess-r-nir t ?;nogepgggﬁge%% e;:t d?elggrrtif c?c?n-
sign. For the special case wheilg=0, Eq.(23) reduces to i N L ribed by a d X
inuum which gives rise to a reaction field inside the cavity.

the expression for the rotational viscosity of the NI model NP .

with the magnetic field replaced by the effective local field.;l.-het.snen%thh ofﬂt}he re@ft'?*”Rﬂf"P gsf?st;matef((:l )byothf magne-
In the present case, due th<O0, it might happen that the Ization W;] mﬁ € Ca\é'. yl j ~es=illl) r}ni,_z ' _1 /02r '
viscosity increase with increasing magnetic field is weaker” 'rr_With effective dielectric constarigs=2(es~1)/(2es

than in the noninteracting case. From Eg1), the normal +1). The functionf(r) can be chosen as a step function

3
Nyx= 1Mo+ 5773¢<

stress differences are calculated as f(r)=1-6(r—rge) with 6(x) the Heaviside function. In order
_ to avoid problems due to the discontinuity fohit r g, we use
N; = 144 sk > ¥ (U (uy) (24)  a cubic spline interpolation for 0.95r/rge<1 [17]. Note

that the termi=j is included in the sum. We emphasize that

. . _ __ 1 . .
E)r '(_21) fh V\;'th wl_]i a?d¢2_d.]£fcl+ 2)/7' Itis e\gdentt frgm | the radius of the cavitygg is always much larger than the cut
=0 | that normal stress differences arise due to dipolal,g radiusr,; of the spherical potentiabs. The validity of
interactions and are therefore absent in the NI model. F

. S %he reaction field method in the present context is shown in
low shear rategu,) can be replaced by its equilibrium value Sec. IVB
Si(h) and (u) has been obtained above adu) ' '
:%'yﬁ(h)sl(h). Therefore,N; simplifies for low rates td\; A. Simulation parameters

=7 nskh 27" (N)S(h). From this expression we find that  The equations of motiofl2) and (13) are integrated nu-
N;>0 andN,< 0, which is the case frequently encounteredmerically with a leapfrog algorithni17]. An adaptive time
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step of ordeAt* =0.001 is employed in all simulations. The !
reduced temperature is chosenTads=1. The magnetic par-
ticles are treated as rigid spheres, where the reduced momei
of inertia takes the forn®@*=06* 1 with ©*=0.1. With the
help of the rotational diffusion time, the dimensionless fric-
tion coefficients can be written a§,,=2T* 7,/ 7 and ¢ 5 061
=3¢, In the simulations we us& =10. Similar to[15], we =
use metallic boundary conditions withy— o, resulting in
‘es=1. Typical values for the cavity radii chosen in the simu-
lations arerge/ 0=2.5, 3.0, and 3.5. The reduced shear rate :
¥* = 7yy is varied between I8 and 10. The simulations are 02 |3
started from initial configurations with particle positions on a 5
regular lattice and random dipole orientations. For each run, .
the system is integrated for at leasf 1ine steps in order to B S S —T
reach a stationary state. Steady state values of rheologice Langevin parameter h
and structural quantities are then extracted as time averages
from the subsequent simulations, which are carried out for FIG. 2. Normalized equilibrium magnetization as a function of
additional 5x 10° or more time steps. the Langevin parametdr for different volume fractionsp and in-

Typically, systems withN=10 648 particles are consid- teraction strengthx. Circles, squares, diamonds, and triangles cor-
ered. In order to investigate finite size effects, several simutespond ta¢,A)=(0.157,4, (0.209,3, (0.0393,4, and(0.0785,2,
lations have been performed wit=512, 1024, 2048, 5325, rgspectlyely. Big SO|IC|. sympols are the resglt of the present simula-
and 16 384 particles. Different values for the reduced numons using the reaction field method, while small open symbols
ber densityn* = (N/V)o® have been chosen, correspondingder!c’te. the results ?mploy'ng an Ewald summation techriigie
to packing fractionsp=n* /6 ranging from 0.02 to 0.16. Solid lines connecting the dafa5] are a guide to the eye.

The remaining dimensionless simulation parameters ap- ) o
pearing in the equations of motiofl2) and (13) are the came_d_out showing only very little influence on the observed
dimensionless friction coefficient, the dipolar interaction ~guantities.
strength\, and the Langevin parametérdefined in Egs.
(10) and(11), respectively.

0.8

1. Magnetization

Figure 4 shows the normalized, flow-induced magnetiza-
o tion M,/Mg,:as a function of the Langevin parametefor a
B. Equilibrium results shear rate ofy*=0.1. Notice that for the present choice of
In the absence of flowy* =0, Egs.(12) and(13) evolve ~ coordinatesM, denotes the magnetization in the flow direc-
the system toward the equilibrium state with the correspondtion, perpendicular to the applied magnetic field; see Fig. 1.
ing canonical distribution function. Figure 2 shows the re-Results for volume fractiong=0.05, 0.1 and different dipo-
sulting equilibrium magnetization as a function of the Lange-
vin parameteh for different volume fractionsp and dipolar T " T T N

interaction strengtha.. Comparison to the results ¢iL5] ! 1
using the Ewald summation technique for dipolar interac- %948 ]
tions shows very good agreement f¢=0.0393,\=4 and 0.046 - o
¢=0.0785\=2. Also cluster sizes and their size distribution 0.0aal ]
(not shown are in very good agreement to the results of _ - |

[15]. For higher volume fractions with significant dipolar = 0~042_‘§ é + ]
interactions,=0.157,A=4 and$=0.209,\ =2, the present  _x 004} T
results are still in good agreement with those obtaindd & = o

o i . 0.038 i
for weak and strong magnetic fields, but show discrepancie -

aroundh=1. Therefore, we conclude that the reaction field  0-036[
method gives accurate results in the semidilute regime if di- 0.034

polar interactions are not too strong. Further studies are lim- [ , ., | . e
ited to this regime. 10" 107

C. Results for plane shear flow FIG. 3. Nonequilibrium magnetizatiod, /Mg, as a function of

) .. the inverse of the number of particléé The magnetic field is
_ In the presence of a stationary shear flow, a nonequilibyiented in the gradient direction of the shear flow; the Langevin
rnum Stat'onary state Is Obta'ned as the Stat'onary SO|UtI0n tgarameter is Chosen as 1.0. Squares and diamonds Correspond to
Egs.(12) and(13). We have verified the convergence of our reaction field cavity radii ofige=3.0 and 3.5, respectively, while
simulation results with respect i, the number of simulated plack circles correspond tge=2.5. The volume fraction and dipo-
particles; see Fig. 3. Furthermore, several simulations wither interaction parameter are chosendss0.05 and\ =2.0, respec-
different values of the reaction field cut-ofgr have been tively. The reduced shear rate is chosenyas0.1.
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FIG. 4. Nonequilibrium magnetizatiod,/ Mg, as a function of FIG. 5. Nonequilibrium magnetization perpendiculist,/ Mgy,
the Langevin parameten. The magnetic field is oriented in the and parallel,M,/Mg,, to the magnetic field as a function of the
gradient direction of the shear flow. Circles and squares corresponeéduced shear ratg. The magnetic field is oriented in the gradient
to volume fractionsp=0.05 and 0.1, respectively. Solid, open, and direction of the shear flow witth=2. The volume fraction and
shaded symbols correspond to different values\pfesulting in  dipolar interaction parameter are chosen ¢xs0.05 and\=1.0,
Langevin susceptibilities of, =0.2, 0.4, and 0.8, respectively. The respectively. The solid line denotes the result of the NI model,
reduced shear rate is chosenygs=0.1. The solid line denotes the dashed lines those of the DMF model. Straight gray lines are the
result for noninteracting magnetic dipoles, dashed, dotted, aneesult for the low shear rate limit.
dash-dotted lines correspond to the dynamical mean-field model,
for . =0.2, 0.4 and 0.8, respectively. See Sec. Ill for a summary of

2. Rotational viscosity
both models.

The rotational viscosity, defined in Sec. Il B, is shown in
lar interaction strength&=0.25, 0.5, 1.0, 2.0 resulting in Fig. 6 as a function of the Langevin parameidor the same
Langevin susceptibilities of, =0.2, 0.4, and 0.8 are shown. conditions and the same parameters as in Fig. 4. Figure 6
We observe that dipolar interactions increase the value gfjystrates the well-known magnetoviscous effect, i.e., the in-
M,/ M, compared to the noninteracting case. This increasgrease of the shear viscosity with increasing magnetic field
is most pronounced around the maximumMf/Msa ath  gyrength. Similar to Fig. 4, we observe that dipolar interac-
~2. The DMF model(see Sec. Il describes the behavior of {5 increase the value of the rotational viscosity. kor
the nonequilibrium magnetization very well fat=0.2and  _55 0 4 the effect of dipolar interactions is weak enough

0.4. For stronger interactiong, =0.8, however, the increase y 4 tha N model describes the simulation data well. For
of M, compared to the noninteracting case becomes morg

pronounced. In this range, the DMF model predicts the Simu_tronger intergct_ions, deviations of the simulation results
lation data semiquantitatively, even though the values of thgom the predictions of the NI model becom_e more pro-
dipolar interaction parametar=1.0 (for ¢=0.1) and 2.0(for nounced. Although the DMF model is not applicable in this
¢=0.05 cannot be considered small and are therefore be-

yond the range of validity of the DMF model. For this choice
of parameters, the nonequilibrium magnetization is no longer
a function of y, only, but depends o and \ separately.
Similar conclusions have been drawn also for the equilib-
rium magnetization; see Fig. 2 ahtl5]. Note that the DMF
model, like any first order mean-field model, fails to account
for such a dependence.

0.2 ———————

-

...............
............

0.15 RS

-

ity

In Fig. 5, the normalized nonequilibrium magnetization
perpendicular and parallel to the magnetic field is shown as
function of the reduced shear raj&. The magnetic field is
chosen afi=2, the volume fractiorh=0.05, and the dipolar
interaction parametex=0.5 and 1.0. As predicted by the
kinetic models, the nonequilibrium magnetizatiom) in-
creases linearly withy for small shear rates, while the mag-
netization component parallel to the magnetic field decrease
monotonically with increasing shear rate. The simulation

A
rotat:

1 viscos

ona.

e
Z

0.05

6 8
Langevin parameter h

data are well described by the NI and DMF mod@lS). The FIG. 6. Reduced rotational viscosityj,, as a function of the
effect of dipolar interactions on the observed quantities ig angevin parameten. The same conditions and the same symbols
weak for the present choice of parameters and becomes leasin Fig. 4 are chosen, in particula# =0.1. The solid and dashed
important for increasing shear rates. lines denote results for the NI and DMF models, respectively.
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FIG. 7. Different contributions to the reduced shear viscosity F|G. 8. The relative viscosity changez/ 7,—1 is shown as a
7yx @s a function of the Langevin parameterCircles and squares  function of the Langevin parameter The same conditions and the
correspond to$=0.05, A=1.0 and ¢=0.1, A=0.5, respectively. same symbols as in Fig. 4 are used. The solid lines correspond to

Solid and gray symbols show the rotational and configurationathe NI model, dashed lines to the DMF model=0.05,A=2.0 and
contributions, respectively. The solid lines are the predictions of thes=0.1, \=1.0) prediction.

NI model, dashed lines the additional prediction of the configura-
tional contribution by the DMF model. The same flow conditions as

before are used, with a reduced shear rata"o£0.1. The total viscosity(see Sec. Il B as a function of the

volume fraction¢ (in the absence of a magnetic field and
) o i .. forarather strong fielth=20 is plotted in Fig. 9. The dipolar
case, its predictions are nevertheless included in Fig. 4nteraction parameter is chosenXs0.5, 1.0, and 2.0. For
While the results for¢=0.05, A=2.0 are rather well de- oy yolume fractions¢=0.05, the viscosity increases lin-
scribed by the DMF model, predictions fe#=0.1, A=1.0  aarly with ¢, followed by a stronger increase for higher vol-
are much less reliable. Note that the DMF model underpreyme fractions. The solid line gives the maximum viscosity
dicts this increase fop=0.05 and overpredicts fap=0.1. increasel ¢ as predicted by the NI model. The simulations
show that due to dipolar interactions, the viscosity increase
3. Contributions to shear viscosity can be significantly larger than predicted by the NI model.
Not only the rotational but also the configurational contri- TNiS conclusion is in qualitative agreement with experimen-
bution defined in Sec. Il B are shown in Fig. 7 as a functiontal results on magnetite based ferroflui@v]. The DMF

of the Langevin parametdr. From the figure we notice that model predicts an additional quadratic viscosity increase,
the configurational shear viscosibyflgnf (see Sec. IIBis bothinthe absence of a magnetic field and in a strong mag-

more or less independent bf Therefore we conclude that

although dipolar and spherical interactions contribute to the 0'4_ ' ' ' ' ' ' ' i T ]
value of the shear viscosity, the magnetic field dependence it 351 pl i
well described by the rotational viscosity only. We note that - P i

the DMF model provides an accurate description of the con- 031 5,” ,/ 7
figurational viscosity contribution for the present choice of 0‘25'_ s § o8

parameters; see the dashed lines in Fig. 7. L
Experimental results on the magnetoviscosity are fre-z 021
quently displayed using the relative viscosity increases 0 15'_
Anl 1y, where Ap=n,,~n, and n, is the viscosity in the = ™[
absence of a magnetic field. Figure 8 shotg/ 7, as a 0.1
function of the Langevin parametér Comparing Fig. 6 to
Fig. 8 we note that although increasing dipolar interactions
lead to an increase of the shear viscosity, the relative 0 . 8-8&-77"
viscosity change\ »/ 5, might decrease with increasing di- 0 002 004 006 008 01 012014 016 0.8
polar interaction strength due to the increaseygfsee Fig. volume fraction ¢
7. At the end of Sec. Ill, we discussed this possibility onthe £ 9 Reduced shear viscosity, as a function of the volume

basis of the DMF model. It is interesting to note thap/ 7, fraction ¢. Open symbols correspond to=0, while solid black
indeed decreases with increasingn the casep=0.1 for all  symbols show the result fdr=20. Circles, squares, and diamonds
values of\ investigated. On the other hand, f¢~=0.05 and  correspond ta.=0.5, 1.0, and 2.0, respectively. The reduced shear
A=2, the relative viscosity increase is higher than in the nonrate is chosen ag*=0.1. The solid line denotes the NI model
interacting case. The predictions of the DMF model showresult[4], dashed\=0.5 and dash-dotte¢h =2.0) lines the DMF
good agreement with the simulation results &+ 0.05. model, each foh— ce.

viscosity

¢

0.05r-
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FIG. 10. The relative viscosity chanden/ 7,—1 is shown as a FIG. 11. Rotational viscosityy:ot as a function of shear ratg.

function of the volume fractiorp. Circles, squares, and diamonds Circles, squares, and diamonds correspontd.0, 2.0, and 4.0,
correspond tav=0.5, 1.0, and 2.0, respectively. The solid line cor- respectively. The volume fractiop=0.05 and dipolar interaction
responds to the maximum viscosity increase predicted by the Ns$trengthh=1.0 have been chosen. The solid line corresponds to NI
model, dashed\=0.5 and dash-dotted\=2.0) lines the maxi- model prediction in the effective field approximation.

mum viscosity increase predicted by the DMF model.

field dependence is well described by Lf(h) which is
netic field. This prediction seems to be well confirmed by thepredicted by the DMF model. Figure 13 shows the ratio of
simulation data. In Fig. 9 we show that the DMF model normal stress differencesNs/N; as a function oh. Within
predictions are also in good quantitative agreement. Howthe error bars, the ratioN»/N; is found to be independent of
ever, we had to use a lower value of the coefficenin the  h, again in agreement with the predictions of the DMF
zero-field viscosity(c,~3) (see Sec. Il B, than our simple model. From the simulation results we findNs/N;
estimate(c,~ 8.34 based on a simple form of the pair cor- =~1.0+0.05 at least for strong magnetic fields where the er-
relation function. Since the coefficienj is sensitive to de- ror bars are small enough, which is slightly lower than 1.17
tails of the pair correlation function, such a discrepancy is tcas predicted by the DMF model. It would be very interesting
be expected. In Fig. 10, the relative viscosity increagé»n, to compare these findings to experimental results. Unfortu-
is shown as a function of the volume fractigh Here, the nately, however, measurements of the first normal stress dif-
viscosity increase is calculated fbr20, i.e., from the data ference are rarely reported in the literature and, to the best of
shown in Fig. 9. Fon=0.5, 1.0, the relative viscosity in- our knowledge, the second normal stress difference has been
crease is smaller than in the noninteracting case, sigie =~ measured only if28]. From these experiments, one can de-
underpredicted by the NI modékee Fig. 9. For A\=2.0, duce a single data point for the ratidN5/ N; =0.24 at mod-
however,A 7/ 7, is higher than predicted by the NI model,
since the maximum viscosity increase overcompensates th- ¢ — ; SR L S
increase ofy,. From Figs. 9 and 10 we conclude that pre- -

dictions of the relative viscosity change based on the NI 0975 Ny - WL M|
model benefit from a partial cancellation of terms, neglected, ;5L /E,L—/'l" i
in the NI model. g D/,»q’ P .

The dependence of the rotational viscosity on the sheaig 0.025r =R P 7
rate is depicted in Fig. 11. We observe, that the rotationals O;%E'EE' 1

ffe;
\
\

viscosity stays constant for shear ratgs <0.5 and de- s NN _
creases for higher shear rates. Thyg,=0.1 as chosen  Z.0.025- I\.\‘E\E.__E ______ .
above, can be considered to be in the weak shear limit, vali- é o BT B
dating previous comparisons to zero-shear results of analyti g 005f L R ]
cal calculations. The solid line in Fig. 11 shows the predic- 751 N Tl Su——
tion of the NI model in the effective field approximation. For 1
the present choice of paramete¢s;0.05,\=1.0, the agree- B S S—T
ment with the simulation results is very good. Langevin parameter h

FIG. 12. Reduced normal stress differendgs N, as functions
of the Langevin parametédr. The same flow conditions and param-
Dimensionless normal stress differenchig= P -P,w  eters as well as the same symbols as in Fig. 4 are used. For better
Np=P},~ P as a function of the Langevin parameteare visibility, only ¢=0.1 and\=0.5 (open symbolsand\=1.0 (gray
presented in Fig. 12. We observe thNy is positive,N, is  symbolg are shown. The dashed lines are a fit based on the DMF
negative, andN; and |N,| increase with increasinh. The  model(see Sec. I

4. Normal stress differences
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FIG. 13. Ratio of normal stress differencez#N, as a function FIG. 14. The first normal stress differenbg as a function of

of the Langevin parametér. The same flow conditions and param- the volume fractiong. Circles, squares, and diamonds correspond
eters as well as the same symbols as in Fig. 4 are used. The dashed\=0.5, 1.0, and 2.0, respectively. The reduced shear rate is cho-
line is the prediction of the DMF model. sen asy*=0.1. A strong magnetic fielh=20 is applied in the
gradient direction of the flow. The dashed lines are the result of a
erate magnetic field strengths. This result is compatible wittfiuadratic fit.
the present results, but further measurements at different
magnetic field strengths are needed in order to verify this
result. correct predictions for these parameters. The DMF model
Finally, the dependence of the first normal stress differmay still be of some value under these conditions for a first
enceN; on the volume fractionp is resolved by the data in estimate of the deviations from the NI model. In particular,
Fig. 14. The reduced shear rateyis=0.1 and a large value as a first order model, the DMF model predicts a dependence
of the magnetic fielch=20 is chosen. We observe that the on y, only, but fails to account for the separate dependence
behavior is well described b, =\ ¢? as proposed by the on ¢ and\, which becomes important for higher concentra-
mean-field mode[9]. The magnitude of the coefficient of tions or stronger dipolar interactions. These conclusions are
proportionality, which depends on the shear rate and magsimilar to those drawn ifi15] for the equilibrium magneti-
netic field, however, is much larger than expected from theation.
mean-field model. Further investigations are necessary to For |arger ConcentrationS, incorporating dip0|ar interac-
elucidate the origin of this difference. tions within the DMF model leads to satisfactory agreement
with simulation results in the weakly interacting regime.
While the nonequilibrium magnetization and magnetovis-
V. CONCLUSIONS cous effect are at least qualitatively described by the NI
. I . . model, the NI model fails to explain the nonlinear increase of
Extensive nonequilibrium molecular simulations h""Vethe viscosity with volume fraction and the presence of nor-

b_een perfc_)rmed in order to Investigate magnetoviscous anr%al stress differences. In particular the field and concentra-
viscoelastic effects of ferrofluids. Plane shear flow with the,

magnetic field oriented in the gradient direction of the flowtlon dgpendence of the normal stress d|ﬁerenge§ is very well
has been considered. We observe that dipolar interac;tion%e.Scrlbed bY the DMF model. Also the predphon that' the
increase the equilibrium as well as the nonequilibrium mag atio ©f the first and second normal stress differences is in-
netization and the shear viscosity. dependent of the magnetic field strength is well confirmed by
For small concentrationg and weak dipolar interactions the simulation results. For strong dipolar interactions, strong
\, giving raise to a Langevin susceptibility of =8\¢ cluster formation is observed in the simulations and the DMF
<0.5, the effect of dipolar interactions on the magnetizationnodel becomes inapplicable. Cluster formation and its rela-
and shear viscosity is weak enough, such that the results af@n to viscous properties have been studied in a dipolar sys-
well described by the kinetic model for noninteracting mag-tem[11], in dense, fully oriented ferrofluids and in magne-
netic dipoles. The dynamical mean-field model proposed retorheological fluidgsee, e.g.[3,29] and references thergin
cently by two of the author§9] provides an improvement We mention, that the NI model can be used to describe
over the NI model and describes the simulation data evealso semidilute ferrofluids, if the diameter of the particles is
better in this regime. For stronger dipolar interactions, theused as a fitting parameter. This procedure is frequently em-
values of the magnetization and shear viscosity increasployed in order to fit experimental data on the viscosity of
more drastically from the predictions of the NI model. Nei- ferrofluids (see Odenbach and Thurm [i]). The DMF
ther the NI nor the DMF model is applicable in this regime model explains this effective diameter in terms of dipolar
and therefore they cannot be expected to give quantitativanteractions. Similarly, strongly interacting ferrofluids might
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be described by the DMF model, if the ratio of relaxation ACKNOWLEDGMENTS
times « is treated as a fitting parameter. This route is not
followed in the present study. Valuable discussions with S. Odenbach are gratefully ac-

Further investigations and comparison to experimental reknowledged. P.l. is grateful to Z. Wang for providing his
sults, in particular for the semidilute regime, are currentlynumerical data of Ref.15]. This work has been performed
being performed. Extensions of the DMF to strong dipolarunder the auspices of the DFG-SPP 1104 “Kolloidale mag-

interactions would be very desirable. netische Flussigkeiten.”

[1] Ferrofluids: Magnetically Controllable Fluids and Their Ap- 021405(2002.
plications edited by S. Odenbach, Lecture Notes in Physics[16] W. T. Coffey, Y. P. Kalmykov, and J. T. Waldroithe Lange-
Vol. 594 (Springer, Berlin, 2002 vin Equation Contemporary Chemical Physics, Vol. (orld

[2] S. Odenbach, J. Phys.: Condens. Matt&ér S1497(2003. Scientific, Singapore, 1996

[3] M. Kroger, P. lig, and S. Hess, J. Phys.: Condens. Mat&r  [17] M. P. Allen and D. J. TildesleyComputer Simulation of Lig-
S1403(2003. _ o uids (Oxford University Press, Oxford, 1987

[4] M. A. Martsenyuk, Y. L. Raikher, and M. I. Shliomis, Sov. [1g] R, G. LarsonThe Structure and Rheology of Complex Fluids
Phys. JETP38, 413(1974. (Oxford University Press, New York, 1989

[5] (Sz.og)genbach and H. W. Miiller, Phys. Rev. Le#9, 037202 [19] P. llg, M. Kréger, and S. Hess, J. Chem. Phyis6 9078
: (2002.
[6] A. Y. Zubarev and L. Y. Iskakova, Phys. Rev. &1, 5415 [20] B. Huke and M. Liicke, Phys. Rev. B2, 6875(2000.

(2000.
N . 21] B. U. Felderhof and R. B. Jones, J. Phys.: Condens. Mafer
7] P. llg and M. Kroger, Phys. Rev. 66, 021501(2002; 67, [
(71 llg ger, Fhys. Hev (2002 4011 (2003.

049901E) 2003.
[8] P. llg, M. Kroger, S. Hess, and A. Y. Zubarev, Phys. Rev. EL22] S. Hess, Z. Naturforsch. 81, 1034(1976.

67, 061401(2003 [23] S. Hess, Z. Naturforsch. 81, 1507(1976
[9] P. llg and S. Hess, Z. Naturforsch., A: Phys. 6B, 589  [241N. A. Clark and B. J. Ackerson, Phys. Rev. Leti4, 1005

(2003. (1980.
[10] H. W. Miiller and M. Liu, Phys. Rev. B64, 061405(2001). [25] S. Hess, Phys. Rev. &2, 2844(1980.
[11] J.-J. Weis, J. Phys.: Condens. Mattss, S1471(2003. [26] J. L. McWhirter and G. N. Patey, J. Chem. Phyd.7, 2747
[12] A. Satoh, R. W. Chantrell, G. N. Coverdale, and S. Kamiyama, (2002.

J. Colloid Interface Sci203, 233(1998. [27] O. Ambacher, S. Odenbach, and K. Stierstadt, Z. Phys. B:
[13] A. Satoh, R. W. Chantrell, and G. N. Coverdale, J. Colloid Condens. Mattei86, 29 (1992.

Interface Sci.209 44 (1999. [28] S. Odenbach, T. Rylewicz, and H. Rath, Phys. Flulds2901
[14] H. Morimoto and T. Maekawa, Int. J. Mod. Phys. B, 823 (1999.

(2002. [29] S. Hess, T. Weider, and M. Kréger, Magnetohydrodynamics
[15] Z. Wang, C. Holm, and H. W. Mdiller, Phys. Rev. B, 37, 297 (2001).

031205-11



