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Extensive molecular simulations on a model ferrofluid are performed in order to study magnetoviscous and
viscoelastic phenomena in semidilute ferrofluids. Simulation results of the nonequilibrium magnetization, shear
viscosity, and normal stress differences are presented. Rotational and configurational contributions to the shear
viscosity are analyzed and their influence on the magnetoviscous effect is discussed. The simplified model of
noninteracting magnetic dipoles describes the nonequilibrium magnetization and the rotational viscosity, but
does not account for configurational viscosity contributions and normal stress differences. Improved mean-field
models that overcome these limitations show good agreement with the simulation results for weak dipolar
interactions where the models should apply. Comparisons to simulation results for various interaction strengths
allow us to determine the range of validity of the mean-field models.
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I. INTRODUCTION

The manipulation of viscous properties of fluids by mag-
netic fields smagnetoviscous effectd has attracted consider-
able interest both for technical and medical applications as
well as from a theoretical point of viewf1–3g. While the
dynamical properties of highly diluted ferrofluids are well
described by the kinetic model of noninteractingsNId ferro-
magnetic particlesf4g, experimental observations on various
ferrofluids demonstrate a quantitative and qualitative differ-
ent behaviorssee, e.g.,f5g and Odenbach and Thurm inf1g
as well as references thereind. In this work, we present mo-
lecular simulation results on magnetoviscous and viscoelas-
tic effects in a model ferrofluid for different concentrations
and dipolar interaction strengths. Results on the formation of
nonequilibrium structures and their relation to dynamical
properties help to improve the understanding of the magne-
toviscous effect from a microscopic point of view. The
present study is also helpful to test several assumptions un-
derlying improved kinetic modelsf6–9g, in particular the dy-
namical mean-fieldsDMFd theory developed in Ref.f9g and
to provide a microscopic basis for thermodynamic theories
f10g. Contrary to previous Brownian or Stokesian dynamics
simulationsf11–13g, we focus here on semidilute ferrofluids
with weak dipolar interactions. This regime is of direct rel-
evance for various commercial ferrofluidsf2g. On the other
hand, simulation results in this regime can be compared to
the predictions of the model of noninteracting dipoles and
dynamical mean-field theory for weakly interacting ferroflu-
ids. These comparisons help to clarify the role of weak di-
polar interactions for dynamical properties. Inf14g, simula-
tion studies similar to the ones presented here have been
performed, but only for small system sizes and in two dimen-
sions only.

The paper is organized as follows. In Sec. II, the model
system is formulated. The equations of motion are given ex-
plicitly as well as the relevant macroscopic quantities. Di-
mensionless quantities are introduced and the numerical
implementation is described. The simplified NI and DMF
reference models are reviewed in Sec. III. Simulation results
are reported and compared against NI and DMF models, as
well as empirical knowledge, in Sec. IV. Conclusions are
offered in Sec. V.

II. MODEL FORMULATION

We consider a system ofN identical spherical particles of
diameters at particle number densityn=N/V. Each particle
carries an embedded magnetic point dipole moment of
strengthm. The position and magnetic moment of particlej
are denoted byr j andmj =mu j, respectively, where the three-
dimensional unit vectoru j denotes the orientation of the
magnetic moment.

Particlesj andk interact with each other by dipole-dipole
interactionsFdd and a spherically symmetric repulsive po-
tential Fs which describes steric interaction effects,

F jksr j,u j,rk,ukd = Fddsr jk,u j,ukd + Fssr jkd, s1d

where r jk; r j −rk and r jk= ur jku is the relative distance be-
tween the particles. The dipole-dipole interaction is given by

Fddsr,u,u8d =
m2

4pm0r
3fu ·u8 − 3su · r̂dsu8 · r̂dg, s2d

wherer̂ =r / r andm0=4p310−7 H/m. For a better compari-
son to the resultsf15g, the potentialFs is also chosen as a
struncated and shiftedd Lennard-Jones potentialFssrd
=4efCsrd−Csrcutdg, for r ø rcut and Fs=0 for r . rcut, where
Csrd=ss / rd12−ss / rd6, rcut is the cut off radius, and −e is the
value of Fs in the minimum. In particular, we choose the
so-called Weeks-Chandler-AndersonsWCAd potential as in
f15g, i.e., rcut=21/6s, such that the potential is cut off in the
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minimum, resulting in a purely repulsive interaction with
continuous derivative atrcut. In addition to the pair interac-
tions, the particles are exposed to a homogeneous magnetic
field H. Therefore, the magnetic dipole moment of particlej
contributesF j

H=−mu j ·H to the total potential energyF
=o jsF j

H+okF jkd.

A. Translational and orientational dynamics

The solvent of the ferrofluid is not considered explicitly
here. Instead, it is assumed that collisions keep the ferromag-
netic particles in thermal equilibrium with the solvent. To
model this effect, friction and Brownian forces are added to
the equations of motion derived fromF so as to ensure the
fluctuation-dissipation theoremf16,17g. If M and U denote
the mass and the moment of inertia tensor of the ferromag-
netic particles, the equations of motion readf14,15,17g

Mv̇ j = o
k=1

N

8F jk − zt„v j − vsr jd… + Î2kBTztẆj
t , s3d

U · v̇ j = mu j 3 H + o
k=1

N

8N jk
dd − zrot„v j − Vsr jd…

+ Î2kBTzrotẆj
rot, s4d

wherev j = ṙ j andv j =u j 3 u̇ j denote the translational and an-
gular velocities of particlej , respectively. The forcesF jk and
torquesN jk

dd are obtained from the interaction potential by

F jk = − ]F jk/]r jk, N jk
dd = −L jF jk s5d

sno summation conventiond, whereL j ;u j 3] /]u j is the ro-
tational operator. The first term on the right hand side of Eq.
s4d equals −L jF j

H, which is the torque exerted by the mag-
netic field. Primes on summation symbols imply that the
term j =k should be omitted from the sums. Boltzmann’s
constant and the absolute temperature are denoted bykB and
T, while zt andzrot are the translational and rotational friction
coefficients, respectively. For a sphere of diameters in a
solvent with viscosityhs, these coefficients are given byzt
=3phss and zrot=phss

3. Frequent collisions of the ferro-
magnetic particles with the solvent molecules are assumed
on short time scales. Accordingly, the effect of the collisions
is modeled by 2N independent, three-dimensional Wiener
processes Wj

xstd with kWj
xstdl=0 and kWj

xstdWk
xst8dl

=minst ,t8dd jk1 for x= t, rot. Averages over different realiza-
tion of the Wiener processes are denoted byk·l. Equations
s3d and s4d account for the hydrodynamic drag in the pres-
ence of a flow fieldvsrd with the local vorticity Vsrd
; 1

2 = 3vsrd. Hydrodynamic interactions are not included in
Eqs.s3d ands4d, which therefore correspond to the so-called
“free draining” limit. In our simulations we obtain particle
trajectories and orientations from Eqs.s3d ands4d which es-
sentially involve, in addition to the numberN and number
densityn of particles, the macroscopic flow fieldvsrd, sol-
vent viscosityhs, dipole moment strengthm, massM, and
moment of inertia tensorU of the particles, temperatureT,
and magnetic fieldH as free parameters. See Sec. II C for a

dimensionless version of these dynamical equations.

B. Macroscopic quantities, viscosity coefficients

The viscous and viscoelastic behavior of the model sys-
tem is described by the viscous pressure tensorP, governing
the momentum balance equationrv̇=−= ·P+ fM, wherefM is
the magnetic force density. For the spatially homogeneous
system to be considered in the remainder of this article, the
viscous pressure tensorP is defined byf17g

P = p01 − hsD +
1

2V
o
j ,k

N

8r jkF jk + 3hsf e · sv̄ − Vd. s6d

The viscous stress tensorT is defined as the negative viscous
pressure tensor,T=−P. The first term on the right hand side
of Eq. s6d represents the isotropic pressure. The second term
is the contribution of the Newtonian solvent with viscosity
hs and the symmetric velocity gradientD; 1

2f=v+s=vdTg.
The contribution of the internal forces is described by the
third term. The last term describes rotational friction if the
average angular velocity of the particlesv̄=s1/Ndoi=1

N vi dif-
fers from the local vorticity of the flowV ssee, e.g., Shliomis
in f1gd. In Eq. s6d, we have introduced the hydrodynamic
volumesor packingd fraction f=nps3/6. The total antisym-
metric tensor of rank 3sLevi-Civitad is denoted bye, i.e.,
e : sabd=a3b for the dyadicab constructed by arbitrary vec-
tors a andb. Like any second rank tensor, the viscous pres-
sure tensorP can be decomposed uniquely into its isotropic,
symmetric traceless and antisymmetric partf3g,

s7d

s8d

Inserting the equation of motions4d into s6d and averaging
over the particles, the antisymmetric part of the viscous pres-
sure tensor is given by

pa = M 3 H s9d

whereM =Msatū denotes the macroscopic magnetization re-
sulting from the magnetic momentsmj =mu j, ū=s1/Ndoiui

is the average orientation of the particles, andMsat=nm is the
saturation magnetization. Thus, the viscous pressure tensorP
is symmetric in the absence of a magnetic field. In the pres-
ence of a local magnetic field, an antisymmetric contribution
to the viscous pressure arises due to the torques exerted by
the magnetic field on the particles. This torque maintains the
difference of average particle rotation and local vorticity of
the flow, v̄−V. We mention that the total pressure tensor,
i.e., the sum of the viscous and Maxwell pressure tensors, is
symmetric due to conservation of total angular momentum.
Note that the ensemble average is denoted by an overbar,
while averages over the thermal noise are indicated by angu-
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lar brackets. Since we consider independent Wiener pro-
cesses, it follows that for large systemskWjstdl=Wjstd=0.

In a steady shear flow with shear rateġ and the linear
velocity profile v=sġy,0 ,0d, several viscometric functions
can be defined. Thestotald shear viscosityhyx is defined as
hyx=−Pyx/ ġ. An important role in the theory of ferrofluid
dynamics plays the so-called rotational viscosityhrot which
is the shear viscosity resulting from the antisymmetric part of
the pressure tensor only,hrot=−pz

a/ s2ġd. In nonpolar com-
plex fluids such as polymers, the shear viscosity is domi-
nated by the configurational viscosity, defined byhyx

conf

=−Pyx
conf/ ġ, where the configurational contribution to the

stress tensorPconf is given by the second term on the right
hand side of Eq.s8d. Furthermore, the first and second nor-
mal stress differences are defined byN1=Pyy−Pxx and N2
=Pzz−Pyy, respectivelyf18g. Experimental results on the
magnetoviscosity are frequently displayed using the relative
viscosity increaseDh /h0, whereDh=hyx−h0 andh0 is the
viscosity in the absence of a magnetic field.

C. Dimensionless equations

For further analytical studies as well as the numerical
implementation of the equations, it is convenient to use di-
mensionless quantities. The dimensionless length and time
are given byr * = r /s and t* = t /t0, t0=sMs2/ed1/2, respec-
tively. Similarly, the reduced temperature is defined byT*
=kBT/e, reduced dipolar moment bym* = ms4pm0es3d−1/2,
magnetic fieldH * = Hs4pm0s3/ed1/2, and moment of inertia
U* = U /Ms2. The dimensionless friction coefficients are
given byzt

* =ztss2/Med1/2 andzrot
* =zrotsMs2ed−1/2. The dipo-

lar interaction parameterl,

l ;
m2

4pm0kBTs3 =
m*2

T*
, s10d

is a measure for the strength of the dipolar interactions com-
pared to the thermal energy. The Langevin parameterh,

h ;
mH

kBT
=

m* H*

T*
, s11d

is the energy of a magnetic dipole in the magnetic field rela-
tive to the thermal energy. Using these quantities, the dimen-
sionless equations of motion for theN particles read

v̇ j
* = o

k=1

N

8F jk
* − zt

*
„v j

* − v * sr j
*d… + Î2T * zt

*Ẇj
* , s12d

U * · v̇ j
* = T * u j 3 h + o

k=1

N

8N jk
dd* − zrot

*
„v j

* − V * sr j
*d…

+ Î2T * zrot
* Ẇj

* . s13d

In Eqs. s12d and s13d, the dimensionless forces and torques
have been defined byF jk

* =st0
2/Ms2dF jk and N jk

dd*

=st0
2/Ms2dN jk

dd, respectively. Both of them are proportional
to the dipolar interaction parameterl. The dimensionless
pressure tensor is defined byP* = ss3/edP. BesidesN andf,

the dimensionless parameters governing the dynamicss12d
and s13d areh,l ,zt

* , andT*.

III. SIMPLIFIED MODELS FOR WEAK DIPOLAR
INTERACTION

The time evolution equationss3d ands4d or s12d ands13d
cannot be solved analytically except for special cases. In
order to better understand the dynamical behavior described
by these equations, it is useful to consider simplified models
that allow further analytical investigations. In particular, a
dynamical mean-field model has been proposed recently by
two of the authorsf9g that extends the existing model of
noninteracting magnetic dipolesf4g to the weakly interacting
regime. In order to make the paper self-contained, we briefly
review the more general DMF model, and summarize its
implications to be checked against simulation results in Sec.
IV.

A. Effective local field

If dipolar interactions can be neglected, the orientational
dynamics Eq.s4d decouples from the translational motion
and the magnetic properties of the system can be studied in
terms of the phase space variablesu and v only. On time
scales where the inertia term can also be neglected,Q ·v̇
=0, Eq. s4d reduces to the Langevin formulation of the ki-
netic NI modelf4,19g

v = V −
1

zrot
LF +Î2kBT

zrot
Ẇ, s14d

with L ,V, andW defined in Sec. II A. The potentialF is
identified with the magnetic field contributionFH; thus pres-
ently LF=−mu3H. The corresponding Fokker-Planck
Smoluchowski equation for the orientational distribution
function fsu ; td is given byf4g

] f

]t
= −L ·FSV −

1

zrot
LFD fG +

kBT

zrot
L2f . s15d

The magnetization is determined fromf by M =Msatkul,
wherekul=ed2u ufsud. For low densities, the effect of weak
dipolar interactions on the equilibrium magnetization can be
described to leading order by an effective local magnetic
field H loc=H + 1

3M, or in dimensionless formhloc=h+xLkul
f20,21g. In these theories, the leading order contribution of
dipolar interactions appears in the form of the Langevin sus-
ceptibility xL=8lf, where l is given by Eq.s10d and f
denotes the hydrodynamic volume fraction introduced above.
While higher order terms inl and f have been considered
for the equilibrium magnetic propertiessseef20,21g and ref-
erences thereind, here only the lowest order contribution is
taken into account for the dynamical properties. Including
these higher order terms into the dynamics is left for further
studies. The energy of a magnetic dipole in the local field
H loc is given by

Floc = − mu ·H loc. s16d

The mean-field character of the potentials16d is evident. In a
constant magnetic fieldH with strengthH, the equilibrium
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magnetization is found from Eq.s16d to be given by
M /Msat=S1shd=L1shlocd. The saturation magnetization is de-
fined by Msat=nm and L1sxd=cothsxd−1/x denotes the
Langevin function. Dipolar interactions therefore lead to an
enhanced magnetization which to leading order inl is given
by S1shd=L1shd+xLL18shdL1shd, where the prime denotes a
total derivative. Recent simulation studies have shown that
the magnetization of weakly interacting ferrofluids is indeed
well described in terms of this local fieldf15g.

B. Dynamical mean field

Following similar strategies widely used in the dynamics
of nematic liquid crystalsf18,22,23g, we assume that Eq.
s16d represents a meaningful potential also for dynamical
properties. In a given external flow fieldvsrd, additional con-
tributions from dipolar interactions appear due to the distur-
bance of the equilibrium structure. The mean dipolar inter-
action energy can be calculated self-consistently from the
orientational distribution functionf,

FSCFsu; fd =
n

kBT
E d2u8E d3r Fddsr,u,u8dgsr,u,u8dfsu8d

s17d

whereg denotes the pair correlation functionf9g. For weak
dipolar interactions,gsr ,u ,u8d<gsrd becomes the pair cor-
relation function of the reference fluid without dipolar inter-
actions. Note that in equilibrium the leading order term lin-
ear inl of Eq. s17d vanishes by symmetry, since in this case
geqsrd=geqsrd is radially symmetric and the angular average
of Fdd over distance vectorsr vanishes.

In an external flow field, the equilibrium structure is dis-
turbed leading to an anisotropic pair correlation function
f24g. In order to estimate the flow-induced distortion of the
pair correlation function, we follow the proposition of one of
the authors inf25g and assume affine deformation with the
flow accompanied by an exponential relaxation toward the
equilibrium state,

]g

]t
+ r · s=vd · = g = −

1

t
sg − geqd. s18d

On time scales long compared to the structural relaxation
time t, Eq. s18d predicts a nonequilibrium stationary struc-
ture which to lowest order in the velocity gradients is de-
scribed by

gsrd = geqsrd − tD:r̂ r̂rgeq8 srd, s19d

where D has been defined after Eq.s6d. Results of recent
nonequilibrium molecular dynamics simulations of a dipolar
model fluidf26g are in good agreement with Eq.s19d. Insert-
ing Eq. s19d into Eq. s17d and combining with the local field
s16d, the effective potential of the magnetic field and dipolar
interactions is given by

Feff

kBT
;

Floc + FSCF

kBT
= − u ·hloc +

6

5
xLtu ·D · kul. s20d

Inserting the effective potential Eq.s20d into the kinetic
equation s15d defines the dynamical mean-field model of

weakly interacting magnetic dipoles proposed inf9g. In the
limit xL →0, the kinetic model of noninteracting magnetic
dipoles is recovered as a special case.

Neither the NI nor the DMF model leads to closed form
expressions for the magnetization and viscosity. In the fol-
lowing, to overcome these difficulties, both models are
treated within the effective field approximation, proposed in
f4g. Previous studiesf7,19g have shown that the effective
field approximation gives very accurate results for the NI
model as well as generalizations thereof. Therefore, we em-
ploy the effective field approximation also in the DMF
model.

C. Implication for the pressure tensor

Within the kinetic models, the magnetization dynamics is
obtained from Eq.s15d. The nonequilibrium magnetization in
turn determines the antisymmetric pressures9d and therefore
the rotational viscosity. In order to calculate the symmetric
traceless part of the pressure tensors8d, we take advantage of
the fact that for homogeneous systems this contribution can
be reexpressed in terms of the pair correlation function. Us-
ing Eq. s20d for the effective potential and the analog of Eq.
s19d for the pair correlation function for weak dipolar inter-
actions, the viscous pressure tensor becomesf9g

s21d

In Eq. s21d, we have introduceda;2hsklf2, where k
;72t / s35trotd andtrot=phss

3/ s2kBTd denotes the rotational
diffusion time of a sphere with diameters in a solvent with
viscosityhs. The shear viscosity of the isotropic suspension
is h0=hss1+ 5

2f+bf2d, where b; 7
6c4k and h̃0;h0− 1

3sc1

−3dakul2. The coefficientsck depend on the detailed form of
the short range interaction potential. For the WCA potential
considered in Sec. II and in the limit of small concentrations
where the pair correlation function of the reference fluid can
be approximated bygsrd<expf−bFssrdg for r .s and zero
else, these coefficients take the valuesc1<7.72 and c4
<8.36. A reduced temperature ofT* =1 has been assumed.
For potentials with softer repulsion higher values ofc1 andc4
are obtained.

In the absence of dipolar interactions, the pressure tensor
is purely antisymmetric if solvent contributions and the iso-
tropic pressure are disregarded. Including dipolar interac-
tions within the mean-field model, we notice from Eq.s21d
that the pressure tensor and therefore the viscosity depend
not only on the vorticity of the flow but also on the symmet-
ric part of the velocity gradientD. Similarly, the nonequilib-
rium magnetization depends, via the effective potentials20d,
also onD. Such a dependence has nicely been demonstrated
in recent experiments on commercial ferrofluidsf5g.

The only parameter in the DMF model that is not speci-
fied so far is the translational relaxation timet entering the
dimensionless quantityk. In principle, t can be determined
from molecular simulations of structural relaxation in non-
magnetic systems. Here, we use as a rough estimate the time
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to travel a particle diametert<t0=sMs2/ed1/2. With this
choice no adjustable parameters are left in the DMF model.

D. Prediction for steady shear flow

A steady shear flow with shear rateġ and the linear ve-
locity profile vsrd=sġy,0 ,0d induces a nonequilibrium mag-
netization component perpendicular to the magnetic field di-
rection. Here and in the following, we consider the special
case where the magnetic field is oriented in the gradient di-
rection of the flow. In the absence of dipolar interactions and
for small shear rates, the off-equilibrium magnetization com-
ponent is to a very good approximation given bykuxl
= 1

2ġt0
'shdL1shd, where t0

'shd=2trotL1shd / fh−L1shdg is the
transversal relaxation timef4,19g. Within the dynamic mean-
field model,kuxl is given bykuxl= 1

2ġt'shdS1shd, where

t'shd = t0
'shlocdf1 + xLt0

'shlocdg s22d

with t0
'sxd=k0s1−L1sxd /xd, k0=s7/24dk. To lowest order in

dipolar interactions, Eq.s22d reduces tot'shd=t0
'shdh1

+xLft0
'shd+ t1

'shdgj, with t1
'sxd=L18sxd−L1sxdfL1

2sxd
−L2sxdg / fx−L1sxdg. For details of the derivation we refer the
reader tof9g.

For the special case of plane Couette flow with the mag-
netic field oriented in the gradient direction, the shear viscos-
ity calculated from Eq.s21d is given by

hyx = h0 +
3

2
hsfS t'shd

2trot
hS1shd + dykxLS1

2shdD , s23d

with dy=sc1/6−9/4d /6<−0.16 for the present case. For
vanishing dipolar interactions, Eq.s23d reduces to the result
for the rotational viscosity given inf4g. We note that the
shear viscosityhyx is modified compared to the NI model not
only by replacing the magnetic field with the local mean field
in the rotational viscosity, but also due to extra contributions
from dipolar and steric interactions. Note also that the con-
tributions of repulsive steric interactions and the attractive
part of the dipolar interactions cancel partially. Depending on
the detailed form of the steric interaction and the resulting
pair correlation function, the coefficientdy may have either
sign. For the special case wheredy=0, Eq. s23d reduces to
the expression for the rotational viscosity of the NI model
with the magnetic field replaced by the effective local field.
In the present case, due tody,0, it might happen that the
viscosity increase with increasing magnetic field is weaker
than in the noninteracting case. From Eq.s21d, the normal
stress differences are calculated as

Ni = 14cihsklf2ġkuxlkuyl s24d

for i =1, 2, withc1=1 andc2=−sc1+ 1
2

d /7. It is evident from
Eq. s24d that normal stress differences arise due to dipolar
interactions and are therefore absent in the NI model. For
low shear rates,kuyl can be replaced by its equilibrium value
S1shd and kuxl has been obtained above askuxl
= 1

2ġt'shdS1shd. Therefore,Ni simplifies for low rates toNi

=7cihsklf2ġ2t'shdS1
2shd. From this expression we find that

N1.0 andN2,0, which is the case frequently encountered

in the rheology of complex fluidsf18g. An interesting obser-
vation from Eq.s24d is that the ratio −N2/N1= sc1+ 1

2
d /7 is a

constant, −N2/N1<1.17 in the present case of the WCA po-
tential, independent of the magnetic field, the shear rate, and
the dipolar interaction strength. This ratio is determined by
the details of the short range interactions and should depend
only weakly viac1 on the volume fraction.

Finally, we note that Eq.s24d implies that the ratio of
normal stress differences is bounded byuN2/N1uù1/14 due
to the propertyc1ù0.

IV. SIMULATION AND RESULTS

Steady shear flows with shear rateġ and the linear veloc-
ity profile vsrd=sġy,0 ,0d together with static magnetic fields
oriented in the gradient direction of the flowH =s0,H ,0d are
considered exclusively in this section. Equilibrium simula-
tions are covered at vanishing shear rate. Figure 1 schemati-
cally illustrates the chosen flow geometry together with the
magnetic field direction.

In order to study bulk properties in a finite, sheared sys-
tem, Lees-Edwards periodic boundary conditionsf17g are
employed. The long range dipolar interactions are handled
using the reaction field methodf17g. In this method, interac-
tions of particles within a spherical cavity of radiusrRF are
treated explicitly, while the effect of particles with distances
greater thanrRF is estimated based on a continuum descrip-
tion. It is assumed that on particlej the effect of particles
with distancesr ij . rRF can be described by a dielectric con-
tinuum which gives rise to a reaction field inside the cavity.
The strength of the reaction field is estimated by the magne-
tization within the cavity,H j

RF= «̃soi fsr ijdmi, fsrd=0 for r
. rRF, with effective dielectric constant«̃s=2s«s−1d / s2«s

+1d. The function fsrd can be chosen as a step function
fsrd=1−usr −rRFd with usxd the Heaviside function. In order
to avoid problems due to the discontinuity off at rRF, we use
a cubic spline interpolation for 0.95ø r / rRFø1 f17g. Note
that the termi = j is included in the sum. We emphasize that
the radius of the cavityrRF is always much larger than the cut
off radius rcut of the spherical potentialFs. The validity of
the reaction field method in the present context is shown in
Sec. IV B.

A. Simulation parameters

The equations of motions12d and s13d are integrated nu-
merically with a leapfrog algorithmf17g. An adaptive time

FIG. 1. Schematic plot of the flow geometry together with the
orientation of the magnetic field considered in the present study.
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step of orderDt* =0.001 is employed in all simulations. The
reduced temperature is chosen asT* =1. The magnetic par-
ticles are treated as rigid spheres, where the reduced moment
of inertia takes the formU* = U* 1 with U* =0.1. With the
help of the rotational diffusion time, the dimensionless fric-
tion coefficients can be written aszrot

* =2T* trot/t0 and zt
*

=3zrot
* . In the simulations we usezt

* =10. Similar tof15g, we
use metallic boundary conditions with«s→`, resulting in
«̃s=1. Typical values for the cavity radii chosen in the simu-
lations arerRF/s=2.5, 3.0, and 3.5. The reduced shear rate
ġ* = t0ġ is varied between 10−3 and 10. The simulations are
started from initial configurations with particle positions on a
regular lattice and random dipole orientations. For each run,
the system is integrated for at least 105 time steps in order to
reach a stationary state. Steady state values of rheological
and structural quantities are then extracted as time averages
from the subsequent simulations, which are carried out for
additional 53105 or more time steps.

Typically, systems withN=10 648 particles are consid-
ered. In order to investigate finite size effects, several simu-
lations have been performed withN=512, 1024, 2048, 5325,
and 16 384 particles. Different values for the reduced num-
ber densityn* = sN/Vds3 have been chosen, corresponding
to packing fractionsf=n* p /6 ranging from 0.02 to 0.16.

The remaining dimensionless simulation parameters ap-
pearing in the equations of motions12d and s13d are the
dimensionless friction coefficientzt

* , the dipolar interaction
strengthl, and the Langevin parameterh defined in Eqs.
s10d and s11d, respectively.

B. Equilibrium results

In the absence of flow,ġ* =0, Eqs.s12d and s13d evolve
the system toward the equilibrium state with the correspond-
ing canonical distribution function. Figure 2 shows the re-
sulting equilibrium magnetization as a function of the Lange-
vin parameterh for different volume fractionsf and dipolar
interaction strengthsl. Comparison to the results off15g
using the Ewald summation technique for dipolar interac-
tions shows very good agreement forf=0.0393,l=4 and
f=0.0785,l=2. Also cluster sizes and their size distribution
snot shownd are in very good agreement to the results of
f15g. For higher volume fractions with significant dipolar
interactions,f=0.157,l=4 andf=0.209,l=2, the present
results are still in good agreement with those obtained inf15g
for weak and strong magnetic fields, but show discrepancies
aroundh=1. Therefore, we conclude that the reaction field
method gives accurate results in the semidilute regime if di-
polar interactions are not too strong. Further studies are lim-
ited to this regime.

C. Results for plane shear flow

In the presence of a stationary shear flow, a nonequilib-
rium stationary state is obtained as the stationary solution to
Eqs.s12d ands13d. We have verified the convergence of our
simulation results with respect toN, the number of simulated
particles; see Fig. 3. Furthermore, several simulations with
different values of the reaction field cut-offrRF have been

carried out showing only very little influence on the observed
quantities.

1. Magnetization

Figure 4 shows the normalized, flow-induced magnetiza-
tion Mx/Msat as a function of the Langevin parameterh for a
shear rate ofġ* =0.1. Notice that for the present choice of
coordinates,Mx denotes the magnetization in the flow direc-
tion, perpendicular to the applied magnetic field; see Fig. 1.
Results for volume fractionsf=0.05, 0.1 and different dipo-

FIG. 2. Normalized equilibrium magnetization as a function of
the Langevin parameterh for different volume fractionsf and in-
teraction strengthsl. Circles, squares, diamonds, and triangles cor-
respond tosf ,ld=s0.157,4d, s0.209,2d, s0.0393,4d, ands0.0785,2d,
respectively. Big solid symbols are the result of the present simula-
tions using the reaction field method, while small open symbols
denote the results employing an Ewald summation techniquef15g.
Solid lines connecting the dataf15g are a guide to the eye.

FIG. 3. Nonequilibrium magnetizationMx/Msat as a function of
the inverse of the number of particlesN. The magnetic field is
oriented in the gradient direction of the shear flow; the Langevin
parameter is chosen ash=1.0. Squares and diamonds correspond to
reaction field cavity radii ofrRF=3.0 and 3.5, respectively, while
black circles correspond torRF=2.5. The volume fraction and dipo-
lar interaction parameter are chosen asf=0.05 andl=2.0, respec-
tively. The reduced shear rate is chosen asġ* =0.1.
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lar interaction strengthsl=0.25, 0.5, 1.0, 2.0 resulting in
Langevin susceptibilities ofxL =0.2, 0.4, and 0.8 are shown.
We observe that dipolar interactions increase the value of
Mx/Msat compared to the noninteracting case. This increase
is most pronounced around the maximum ofMx/Msat at h
<2. The DMF modelssee Sec. IIId, describes the behavior of
the nonequilibrium magnetization very well forxL =0.2 and
0.4. For stronger interactions,xL =0.8, however, the increase
of Mx compared to the noninteracting case becomes more
pronounced. In this range, the DMF model predicts the simu-
lation data semiquantitatively, even though the values of the
dipolar interaction parameterl=1.0 sfor f=0.1d and 2.0sfor
f=0.05d cannot be considered small and are therefore be-
yond the range of validity of the DMF model. For this choice
of parameters, the nonequilibrium magnetization is no longer
a function ofxL only, but depends onf and l separately.
Similar conclusions have been drawn also for the equilib-
rium magnetization; see Fig. 2 andf15g. Note that the DMF
model, like any first order mean-field model, fails to account
for such a dependence.

In Fig. 5, the normalized nonequilibrium magnetization
perpendicular and parallel to the magnetic field is shown as a
function of the reduced shear rateġ*. The magnetic field is
chosen ash=2, the volume fractionf=0.05, and the dipolar
interaction parameterl=0.5 and 1.0. As predicted by the
kinetic models, the nonequilibrium magnetizationkuxl in-
creases linearly withġ for small shear rates, while the mag-
netization component parallel to the magnetic field decreases
monotonically with increasing shear rate. The simulation
data are well described by the NI and DMF modelss15d. The
effect of dipolar interactions on the observed quantities is
weak for the present choice of parameters and becomes less
important for increasing shear rates.

2. Rotational viscosity

The rotational viscosity, defined in Sec. II B, is shown in
Fig. 6 as a function of the Langevin parameterh for the same
conditions and the same parameters as in Fig. 4. Figure 6
illustrates the well-known magnetoviscous effect, i.e., the in-
crease of the shear viscosity with increasing magnetic field
strength. Similar to Fig. 4, we observe that dipolar interac-
tions increase the value of the rotational viscosity. ForxL
=0.2, 0.4, the effect of dipolar interactions is weak enough
that the NI model describes the simulation data well. For
stronger interactions, deviations of the simulation results
from the predictions of the NI model become more pro-
nounced. Although the DMF model is not applicable in this

FIG. 4. Nonequilibrium magnetizationMx/Msat as a function of
the Langevin parameterh. The magnetic field is oriented in the
gradient direction of the shear flow. Circles and squares correspond
to volume fractionsf=0.05 and 0.1, respectively. Solid, open, and
shaded symbols correspond to different values ofl, resulting in
Langevin susceptibilities ofxL =0.2, 0.4, and 0.8, respectively. The
reduced shear rate is chosen asġ* =0.1. The solid line denotes the
result for noninteracting magnetic dipoles, dashed, dotted, and
dash-dotted lines correspond to the dynamical mean-field model,
for xL =0.2, 0.4 and 0.8, respectively. See Sec. III for a summary of
both models.

FIG. 5. Nonequilibrium magnetization perpendicular,Mx/Msat,
and parallel,My/Msat, to the magnetic field as a function of the
reduced shear rateġ*. The magnetic field is oriented in the gradient
direction of the shear flow withh=2. The volume fraction and
dipolar interaction parameter are chosen asf=0.05 andl=1.0,
respectively. The solid line denotes the result of the NI model,
dashed lines those of the DMF model. Straight gray lines are the
result for the low shear rate limit.

FIG. 6. Reduced rotational viscosityhrot
* as a function of the

Langevin parameterh. The same conditions and the same symbols
as in Fig. 4 are chosen, in particular,ġ* =0.1. The solid and dashed
lines denote results for the NI and DMF models, respectively.
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case, its predictions are nevertheless included in Fig. 4.
While the results forf=0.05, l=2.0 are rather well de-
scribed by the DMF model, predictions forf=0.1, l=1.0
are much less reliable. Note that the DMF model underpre-
dicts this increase forf=0.05 and overpredicts forf=0.1.

3. Contributions to shear viscosity

Not only the rotational but also the configurational contri-
bution defined in Sec. II B are shown in Fig. 7 as a function
of the Langevin parameterh. From the figure we notice that
the configurational shear viscosityhyx

conf ssee Sec. II Bd is
more or less independent ofh. Therefore we conclude that
although dipolar and spherical interactions contribute to the
value of the shear viscosity, the magnetic field dependence is
well described by the rotational viscosity only. We note that
the DMF model provides an accurate description of the con-
figurational viscosity contribution for the present choice of
parameters; see the dashed lines in Fig. 7.

Experimental results on the magnetoviscosity are fre-
quently displayed using the relative viscosity increase
Dh /h0, where Dh=hyx−h0 and h0 is the viscosity in the
absence of a magnetic field. Figure 8 showsDh /h0 as a
function of the Langevin parameterh. Comparing Fig. 6 to
Fig. 8 we note that although increasing dipolar interactions
lead to an increase of the shear viscosityhyx, the relative
viscosity changeDh /h0 might decrease with increasing di-
polar interaction strength due to the increase ofh0; see Fig.
7. At the end of Sec. III, we discussed this possibility on the
basis of the DMF model. It is interesting to note thatDh /h0
indeed decreases with increasingl in the casef=0.1 for all
values ofl investigated. On the other hand, forf=0.05 and
l=2, the relative viscosity increase is higher than in the non-
interacting case. The predictions of the DMF model show
good agreement with the simulation results forf=0.05.

The total viscosityssee Sec. II Bd as a function of the
volume fractionf sin the absence of a magnetic field andd
for a rather strong fieldh=20 is plotted in Fig. 9. The dipolar
interaction parameter is chosen asl=0.5, 1.0, and 2.0. For
low volume fractionsf&0.05, the viscosity increases lin-
early withf, followed by a stronger increase for higher vol-
ume fractions. The solid line gives the maximum viscosity
increase3

2hsf as predicted by the NI model. The simulations
show that due to dipolar interactions, the viscosity increase
can be significantly larger than predicted by the NI model.
This conclusion is in qualitative agreement with experimen-
tal results on magnetite based ferrofluidsf27g. The DMF
model predicts an additional quadratic viscosity increase,
both in the absence of a magnetic field and in a strong mag-

FIG. 7. Different contributions to the reduced shear viscosity
hyx

* as a function of the Langevin parameterh. Circles and squares
correspond tof=0.05, l=1.0 and f=0.1, l=0.5, respectively.
Solid and gray symbols show the rotational and configurational
contributions, respectively. The solid lines are the predictions of the
NI model, dashed lines the additional prediction of the configura-
tional contribution by the DMF model. The same flow conditions as
before are used, with a reduced shear rate ofġ* =0.1.

FIG. 8. The relative viscosity changeDh /h0−1 is shown as a
function of the Langevin parameterh. The same conditions and the
same symbols as in Fig. 4 are used. The solid lines correspond to
the NI model, dashed lines to the DMF modelsf=0.05,l=2.0 and
f=0.1, l=1.0d prediction.

FIG. 9. Reduced shear viscosityhyx
* as a function of the volume

fraction f. Open symbols correspond toh=0, while solid black
symbols show the result forh=20. Circles, squares, and diamonds
correspond tol=0.5, 1.0, and 2.0, respectively. The reduced shear
rate is chosen asġ* =0.1. The solid line denotes the NI model
result f4g, dashedsl=0.5d and dash-dottedsl=2.0d lines the DMF
model, each forh→`.
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netic field. This prediction seems to be well confirmed by the
simulation data. In Fig. 9 we show that the DMF model
predictions are also in good quantitative agreement. How-
ever, we had to use a lower value of the coefficientc4 in the
zero-field viscositysc4<3d ssee Sec. III Bd, than our simple
estimatesc4<8.34d based on a simple form of the pair cor-
relation function. Since the coefficientc4 is sensitive to de-
tails of the pair correlation function, such a discrepancy is to
be expected. In Fig. 10, the relative viscosity increaseDh /h0
is shown as a function of the volume fractionf. Here, the
viscosity increase is calculated forh=20, i.e., from the data
shown in Fig. 9. Forl=0.5, 1.0, the relative viscosity in-
crease is smaller than in the noninteracting case, sinceh0 is
underpredicted by the NI modelssee Fig. 9d. For l=2.0,
however,Dh /h0 is higher than predicted by the NI model,
since the maximum viscosity increase overcompensates the
increase ofh0. From Figs. 9 and 10 we conclude that pre-
dictions of the relative viscosity change based on the NI
model benefit from a partial cancellation of terms, neglected
in the NI model.

The dependence of the rotational viscosity on the shear
rate is depicted in Fig. 11. We observe, that the rotational
viscosity stays constant for shear ratesġ* ,0.5 and de-
creases for higher shear rates. Thus,ġ* =0.1 as chosen
above, can be considered to be in the weak shear limit, vali-
dating previous comparisons to zero-shear results of analyti-
cal calculations. The solid line in Fig. 11 shows the predic-
tion of the NI model in the effective field approximation. For
the present choice of parameters,f=0.05,l=1.0, the agree-
ment with the simulation results is very good.

4. Normal stress differences

Dimensionless normal stress differencesN1
* =Pyy

* −Pxx
* ,

N2
* =Pzz

* −Pyy
* as a function of the Langevin parameterh are

presented in Fig. 12. We observe thatN1 is positive,N2 is
negative, andN1 and uN2u increase with increasingh. The

field dependence is well described byNi ~L1
2shd which is

predicted by the DMF model. Figure 13 shows the ratio of
normal stress differences −N2/N1 as a function ofh. Within
the error bars, the ratio −N2/N1 is found to be independent of
h, again in agreement with the predictions of the DMF
model. From the simulation results we find −N2/N1
<1.0±0.05 at least for strong magnetic fields where the er-
ror bars are small enough, which is slightly lower than 1.17
as predicted by the DMF model. It would be very interesting
to compare these findings to experimental results. Unfortu-
nately, however, measurements of the first normal stress dif-
ference are rarely reported in the literature and, to the best of
our knowledge, the second normal stress difference has been
measured only inf28g. From these experiments, one can de-
duce a single data point for the ratio −N2/N1<0.24 at mod-

FIG. 10. The relative viscosity changeDh /h0−1 is shown as a
function of the volume fractionf. Circles, squares, and diamonds
correspond tol=0.5, 1.0, and 2.0, respectively. The solid line cor-
responds to the maximum viscosity increase predicted by the NI
model, dashedsl=0.5d and dash-dottedsl=2.0d lines the maxi-
mum viscosity increase predicted by the DMF model.

FIG. 11. Rotational viscosityhrot
* as a function of shear rateġ*.

Circles, squares, and diamonds correspond toh=1.0, 2.0, and 4.0,
respectively. The volume fractionf=0.05 and dipolar interaction
strengthl=1.0 have been chosen. The solid line corresponds to NI
model prediction in the effective field approximation.

FIG. 12. Reduced normal stress differencesN1
* , N2

* as functions
of the Langevin parameterh. The same flow conditions and param-
eters as well as the same symbols as in Fig. 4 are used. For better
visibility, only f=0.1 andl=0.5 sopen symbolsd andl=1.0 sgray
symbolsd are shown. The dashed lines are a fit based on the DMF
model ssee Sec. IIId.
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erate magnetic field strengths. This result is compatible with
the present results, but further measurements at different
magnetic field strengths are needed in order to verify this
result.

Finally, the dependence of the first normal stress differ-
enceN1 on the volume fractionf is resolved by the data in
Fig. 14. The reduced shear rate isġ* =0.1 and a large value
of the magnetic fieldh=20 is chosen. We observe that the
behavior is well described byN1~lf2 as proposed by the
mean-field modelf9g. The magnitude of the coefficient of
proportionality, which depends on the shear rate and mag-
netic field, however, is much larger than expected from the
mean-field model. Further investigations are necessary to
elucidate the origin of this difference.

V. CONCLUSIONS

Extensive nonequilibrium molecular simulations have
been performed in order to investigate magnetoviscous and
viscoelastic effects of ferrofluids. Plane shear flow with the
magnetic field oriented in the gradient direction of the flow
has been considered. We observe that dipolar interactions
increase the equilibrium as well as the nonequilibrium mag-
netization and the shear viscosity.

For small concentrationsf and weak dipolar interactions
l, giving raise to a Langevin susceptibility ofxL =8lf
&0.5, the effect of dipolar interactions on the magnetization
and shear viscosity is weak enough, such that the results are
well described by the kinetic model for noninteracting mag-
netic dipoles. The dynamical mean-field model proposed re-
cently by two of the authorsf9g provides an improvement
over the NI model and describes the simulation data even
better in this regime. For stronger dipolar interactions, the
values of the magnetization and shear viscosity increase
more drastically from the predictions of the NI model. Nei-
ther the NI nor the DMF model is applicable in this regime
and therefore they cannot be expected to give quantitative

correct predictions for these parameters. The DMF model
may still be of some value under these conditions for a first
estimate of the deviations from the NI model. In particular,
as a first order model, the DMF model predicts a dependence
on xL only, but fails to account for the separate dependence
on f andl, which becomes important for higher concentra-
tions or stronger dipolar interactions. These conclusions are
similar to those drawn inf15g for the equilibrium magneti-
zation.

For larger concentrations, incorporating dipolar interac-
tions within the DMF model leads to satisfactory agreement
with simulation results in the weakly interacting regime.
While the nonequilibrium magnetization and magnetovis-
cous effect are at least qualitatively described by the NI
model, the NI model fails to explain the nonlinear increase of
the viscosity with volume fraction and the presence of nor-
mal stress differences. In particular the field and concentra-
tion dependence of the normal stress differences is very well
described by the DMF model. Also the prediction that the
ratio of the first and second normal stress differences is in-
dependent of the magnetic field strength is well confirmed by
the simulation results. For strong dipolar interactions, strong
cluster formation is observed in the simulations and the DMF
model becomes inapplicable. Cluster formation and its rela-
tion to viscous properties have been studied in a dipolar sys-
tem f11g, in dense, fully oriented ferrofluids and in magne-
torheological fluidsssee, e.g.,f3,29g and references thereind.

We mention, that the NI model can be used to describe
also semidilute ferrofluids, if the diameter of the particles is
used as a fitting parameter. This procedure is frequently em-
ployed in order to fit experimental data on the viscosity of
ferrofluids ssee Odenbach and Thurm inf1gd. The DMF
model explains this effective diameter in terms of dipolar
interactions. Similarly, strongly interacting ferrofluids might

FIG. 14. The first normal stress differenceN1
* as a function of

the volume fractionf. Circles, squares, and diamonds correspond
to l=0.5, 1.0, and 2.0, respectively. The reduced shear rate is cho-
sen asġ* =0.1. A strong magnetic fieldh=20 is applied in the
gradient direction of the flow. The dashed lines are the result of a
quadratic fit.

FIG. 13. Ratio of normal stress differences −N2/N1 as a function
of the Langevin parameterh. The same flow conditions and param-
eters as well as the same symbols as in Fig. 4 are used. The dashed
line is the prediction of the DMF model.
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be described by the DMF model, if the ratio of relaxation
times k is treated as a fitting parameter. This route is not
followed in the present study.

Further investigations and comparison to experimental re-
sults, in particular for the semidilute regime, are currently
being performed. Extensions of the DMF to strong dipolar
interactions would be very desirable.
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